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ABSTRACT 
A refinement of the numerical calculation of reducing PVT parameters 

has been given by using the Marquardt-Levenberg nonlinear least-squares 
algorithm. Three dif ferent polymers were analyzed and evaluated by the pro- 
posed method. The precision of the PVT measurement makes sense for an im- 
provement of the evaluation by applying the Marquardt algorithm. 

INTRODUCTION 
The thermodynamic state of amorphous, thermoplastic polymers can be 

described by the stat ist ical  theory of Prigogine [1] which was modified for 
polymers by Simha and Somcynsky [2]. This theory treats the polymeric sys- 
tem as a quasi-latt ice, including vacant sites which account for structural 
disorder. The lat t ice points of the quasi-lattice are either occupied by 
polymer segments (with volume fraction of y) or are vacant (holes with vol- 
ume fraction of ( l -y))  where y is a function of pressure and temperature. 
The obtained equation of state has the following form: 

PV/T = [1 - 2-1/6y(yg)-l/3]- l+ (2y/T)(yg)-2-[1.011(yg) -2- 1.2045] (1) 

where the reduced variables P, ~ and T are defined in terms of the scaling 
parameters P*, V* and T*, as follows: 

P = P/P*; g = V/V*; T = T/T* (2) 

The P*, V* and T* parameters describe a "reference state" which is not a 
corresponding state in the sense of the thermodynamic theory of real gases. 
This "reference state" corresponds to the hypothetical thermodynamic state 
where the thermal kinetic energy of the segments compensates for the poten- 
t ia l  energy of their mutual interaction. For this state holds: 

P'V* = (1/3)fkT* (3) 

where f is the total number of volume dependent (external) degrees of free- 
dom of the involved segments and k is the Boltzmann constant. In one res- 
pect the equation of state, written in this form, satisfies a principle of 
corresponding states: that is, i t  holds for all the compounds encompassed 
by the theory, independently of their molecular characteristics. 

For the determination of y(P,T) in equation (1) an additional condi- 
tion must be found. A possibi l i ty is to make use of the minimum condition 
for the Helmholtz' free energy F at thermodynamic equilibrium: 
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(BFIBy)p, T : 0 (4) 

One obtains with this condition the following equation [2]: 

1 + y-l ln(1 -y) : (y/6T)(yg)-212.409 - 3.033(y~) -2] + 

+ [2-1/6y(y~- i /3) - ( i /3) ] [ l  - 2"l/6y(yV)-I/3] - I  (5) 

Numerical evaluation of the parameters of the equation of state. 
The system of coupled equations (1) and (5) requires a numerical solu- 

tion. This can be provided by the algorithm of Marquardt-Levenberg [3,4,5], 
a method for the least-squares estimation of nonlinear parameters. The 
model to be f i t ted is described by a nonlinear equation of the type: 

E(z) = f(x I . . . . . .  Xn; 91 . . . . . .  ~n) (6) 

where E(z) is the expectation, value of the observed quantity, z; x I , . . . ,  Xn 
are the independent varlables, and ~ i , . . . ,  %~ are estlmates for the parame- 
ters. M values of z i (i = 1 . . . . .  M) are obtalned from M measurements. 

The values of the parameter vector can be estimated through a nonli- 
near least-squares regression analysis. The minimum of S(~) (the error sum 
of squares) is written as: 

n 
S(B 1 . . . . .  ~K ) = 2 {~ - f ( ~  . . . . .  ~ ;  ~ . . . . .  ~K)} 2 (7) 

u=1 

We applied the Marquardt least-squares estimation algorithm for the non- 
linear parameters. B I , . . .  ~K from the IBM share software l ibrary [5]. We 
chose thls procedure because i t  represents the best compromise between the 
linearization method and the steepest-descent algorithm [6], in that i t  
avoids the most serious limitations of both, w~ile~combining their advanta- 
ges. The computer output contains the sought P-, V ~ and T ~ parameters, the 
observed and predicted pressure (the f i t  was performed for the pressure) 
with the corresponding temperature, volume and y function values. Detailed 
stat ist ical characterization of the f i t  (total root mean squares error, 
standard error, conventional one parameter and support plane confidence 
intervals and parameter correlation matrix) is also given. 

In our particular case, the pressure P plays the role of function E(z) 
in the functional (6), while the volume V and the temperature T correspond 
to the independent variables in the same functional. A numerical solution 
of the transcendental equation (5) yields y (~,T), which is inserted into 
equation (1). The values of the three scaling parameters and y are then ad- 
justed by an iteration procedure of the Marquardt algorithm. 

The algorithm of Marquardt requires a t r ia l  solution for the parame- 
ters to be improved by the subsequent iteration procedure. An in i t ia l  set 
of parameters is provided by a numerical code (from Gnomix Research), which 
makes use of an approximate solution of the coupled equations (1) and (5) 
(see e.g. [7]): 

InV o = A + BT 3/2 (8) 

This relationship is valid at atmospheric pressure, with A = - 0.1034 and B 
= 23.835 in the range 0.95 ~ V o ~ 1.40 [7]. An analogous expression holds 
for the unreduced variables: 

InV o = C + DT 3/2 (9) 
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The constants C and D can be determined by least-squares f i t s  of volume 
data (at atmospheric pressure) versus temperature. The scaling parameters 
V* and T* are then given by: 

V* = exp (C - A); T* = (B/D) 2/3 (10) 

As far as P* is concerned, a preliminary value P<* is calculated by solving 
equations (1) and (5) for each isotherm, to obtain Pg/T and a set of g va- 
lues. This is done through the relationship: 

Pj* = (PjVj/Tj)(T*/V*)(Pg/T) -1 (11) 

where (P j ,  ~ )  represents an experimental point. The average over Pj* 
VJ't final value of P*. is assumed as 

Calculation of thermodynamic parameters. 
By evaluating the reducing PVT parameters and the y function useful 

thermodynamic information can directly be obtained. Some examples are given 
below: 

- the cohesion energy density AE [2]: 

AE_ P*(y/2~)[2 409(y~) -2- l.Oll(yV) -4] 
V 

the thermal expansion coefficient a 0 [8]: 

a 0 = [d(In V(O,T))/dT] = (3/2).23.835.T *(-3/2) 

- the isothermal compressibility K [9]: 

K = -(1/V)(~V/~P) = C{[1 - C.In(l + ~/B)][(~ + B) -1} 

(12) 

(13) 

(14) 

where the constant C has a value of 0.0894 [10] and B=O.9549.exp(-49.22T) 
(see [9]); 

- the effective segment mass M 0 [8] with one volume dependent degree of 
freedom of the segments and with the R gas constant: 

M 0 = (1/3)RT*/P*V* (15) 

EXPERIMENTAL 
Three polymers with different segment polar izabi l i ty have been tested. 

PVT measurements on melts of a low density polyethylene (product of BASF 
Ag., sample B in IUPAC Working Party on Structure and Properties of Commer- 
cial Polymers [11]), a polyvinyl alcohol (product of Fluka) and a poly- 
amide-6 (Grilon A 28, product of Ems Chemie) are reported. The test materi- 
als were previously dried at 120~ under vacuum (P < 1 torr) for 15 hours. 

The experimental apparatus was the PVT Gnomix of the Gnomix Research 
[12], which allows a direct, static measurement of specific-volume changes , 
as a function of temperature or pressure, with an accuracy of 0.0002 cma/g. 
A piezometer test cell has to be f i l l ed  with a small amount of granulate 
sample (ca. 1-2 g) and with mercury, which serves as a confining f lu id.  The 
lower end of the cell is closed by a f lexible metal bellows. The deflection 
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of the latter is measured by a linear variable di f ferent ial  transducer 
(LVDT). This deflection is proportional to the change in the specific vo- 
lume. 

The PVT machine was operated in the isothermal mode, i.e. increasing 
pressures were applied at a constant temperature. The starting conditions 
were T = 30~ and P = IOMPa (gauge pressure) in every case. The specific 
volume changes are measured with reference to the starting V r value: 

AV = V(P,T) - V r (16) 

RESULTS 
The experimental isotherms were measured in the pressure range between 

0 and 200 MPa: 
- for low density polyethylene (LDPE) at the temperatures 127.1 ~ 

144.3 ~ 160.4 ~ 177.3 ~ and 192.3 ~ (Figures la and lb); 
- for polyamide-6 (PA-6) at the temperatures 218.4 ~ 249.3 ~ 269.5 ~ 

294.5 ~ and 316.8 ~ (Figures 2a and 2b); 
- for polyvinylalcohol (PVA) at the temperatures 157.9 ~ 169.? ~ 

179.5 ~ 190.2 ~ and 195.8 ~ (Figures 3a and 3b). 
The measured data were evaluated by the Gnomix numerical code and by the 
M~rqu~rdt f i  G . Solid lines in Figures la, 2a and 3a were calculated with 
P , V and T obtained,by She numerical code and solid lines in Figures lb, 
2b and 3b with those P-, V- and T- values which were obtained in the Mar- 
quardt f i t .  Since the parameters obtained by the Marquardt f i t  were calcu- 
lated with starting values, which were results of the numerical code, they 
f i t  better to the measured data. Some characteristics of the results are 
summarized in Table 1. 

Table 1 
Results of numerical f i t s  for PVT data measured on dif ferent polymer melts 

using the Simha-Somcynsky theory. 
/G/: numerical code of Gnomix; 

/M/: Marquardt nonlinear least-squares estimation. 
Standard errors (St. error) were calculated 
from measured and f i t ted  pressure values. 

LDPE PA-6 PVA 

P* [MPa] /G/ 829 1266 2435 

P* [MPa] /M/ 837 1265 2360 

St. error /G/ 0.60 % 0.30 % 0.22 % 

St. error /M/ 0.24 % 0.23 % 0.20 % 

V*[cm3/g] /G/ 1.1290 0.9138 0.7?22 

V*[cm3/g] /M/ 1.1414 0.9195 0.7812 

T* [OK] /G/ 9359 11231 9226 

T* [~ /M/ 9767 11456 9531 
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Figure 2a and 2b 
Comparison of experimental and theoretical isotherms for PA-6 measured at 
218.4 ~ 249.3 ~ 269.5 oc; 294.5 oc and 316.8 ~ 
Figure 2a Solid line - result of the numerical code. 
Figure 2b Solid l ine - result of the Marquardt f i t .  
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Figure 3a and 3b 
Comparison of experimental and theoretical isotherms for PVA measured at 
157.9 ~ 169.7 ~ 179.5 ~ 190.2 ~ and 195.8 ~ 
Figure 3a Solid line - result of the numerical code. 
Figure'3b Solid l ine - result of the Marquardt f i t .  
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In Table i standard errors in the pressure corresEond to,the measurement 
accuracy. On the other hand, the differences in V- and T - values obtained 
by the different f i t s  exceed the accuracy of the measurement. The errors in 
a typical measurement are for the pressure ca. • 0.2 MPa, for the specific 
voulme is ca. • 0.0002 cm3/g and for the temperature is ca. • 0.3 ~ This 
means that the precision of the measurement makes sense for an improvement 
of the evaluation e.g. by applying the Marquardt algorithm. 
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